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The concept is introduced of strong unicity with respect to a rate function u, i.e.,
Ilf- pll) Ilf- p,-II + )'u(11 P - p,-If), in approximating (with constraints) f in a
Banach space X from an n-dimensional subspace V (p E V, P, denotes the best
approximation tof, and)' denotes a positive constant). Past work has demonstrated
examples of monotone approximation in C [a, b1, where V is Haar and the best u
has polynomial decay of arbitrary even degree (i.e., u(t) = t2m, m = 1,2,...,). In
particular, in this same setting examples are demonstrated where the best u decays
exponentially (e.g., exp(-c2 t~2/3) ~ u(t) ~ t- 2/3 exp(-c 1 t- 213 ) for constants
0< c, < c2 ) and a general statement is provided relating the best u to h" when
V = [I, x, h /(x), h(x)1and h E C 2 satisfies certain conditions.

From [4] and [5] we have the existence of IE C[a,b] such that, if PI
denotes a best (monotone) approximation to I from M 4 = V4 n
{p :P'(x) ~ O}, where V4 = [1, X, x 2

, x 3
], then h is strongly unique 01 order

~ ([5Dand the order ~ is best possible ([4 D. That is, for each N > 0 there is
a constant y> 0 such that, for all P E M 4 with II pil <. N,

III- pil ~ III- PIli + y II P - PIIII/a,

where a =! and is best possible (Le., no larger a will suffice).

(1)
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In [3] the above result is extended to the cases where V4 = [I, X, x 2m ,
x 2m +I], where m = 1,2,... ; Le., (1) holds where the "order" a = Ij2m and is
best possible.

DEFINITION 1. If PI is a best uniform approximation to fE qa, b] from
W, a subset of q a, b], we shall say that PI is strongly unique with (respect to
the) rate (function) u (u E qo, (0), u is increasing, and u(O) = 0) if for each
N > 0 there is a constant y > 0 such that

IIf-pli ~ IIf-Ptll + yu(lIp - PIli) (2)

for all pEW satisfying II pil ~ N. We shall say that the rate (of strong
unicity) is at best u if (2) cannot be satisfied by any ul' where
u(x)=o(ul(x», x-+O+.

EXAMPLE 1. For the cases treated in [3], u(x) = KX
2m (for an arbitrary

constant K>O). Note in fact that U(X) = x(x2m+ I)", where X2m +I E V4 =
[l,x,x 2m,x2m +lj. We thus have an example of the following two theorems
by taking h(x) = x 2m +I and ~(x) = x and noting that (h' jh")h = Ij2m <
Ij(2m - 1) = (h"jhlll)h.

THEOREM 1. Take V4 = [1,x,h'(x),h(x)] to be a Baar space in some
neighborhood (-a, a) of the origin, where hE C 2(-00, (0), h is odd,
h'(O) = 0, h" is strictly increasing, and h'(x)jh"(x) is asymptotic (as x -+ 0+)
to A~(X), A> 0, where ~ E qo, (0), ~(O) = 0, and ~ strictly increases to 00.

Then ifwe take W = M 4 (i.e., monotone approximation from V4 ), there is an
fE CIa, b], 0 E (a, b) c (-a, a) such that the best approximation PI to f is
unique and the rate of strong unicity is at best u(x) = xh"(~- I (cx» for some
constant c >0. Furthermore, f can itself be chosen monotone.

THEOREM 2. In addition to the hypotheses of Theorem 1, suppose
hE C 3(0, (0), ~ E CI[O, (0), ~'(x) >ofor x >0, and A~'(O) < 1. Then,for f
in Theorem 1, Pt is strongly unique with respect to u(x) = x'll(y) h"(y), where
y = ~-I(cx)for some constant c >0, and

(i) if~'(O»O,'II=I;

(ii) if ~'(O) = 0, 'II is any positive nondecreasing continuous function
asymptotic to [(h"jh lll ) - (h'jh")]j~.

Note. If ~'(O) > 0, then [(h"jh lll ) - (h'jh")]j~ is asymptotic to a
positive constant; thus (i) and (ii) can be combined and replaced by "'II is
any positive continuous function asymptotic to [(h"jh lll ) - (h'jh")]h."
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Remark. That h is odd and continuous implies h(O) = 0; hE C I implies
h' is even; h E C2 implies h" is odd and h"(O) = 0; h" strictly increasing and
h'(O) = 0 implies h'(x) ~ 0 with equality only for x = O. Likewise, when
hE C3(0, a), we have on (-a, 0) U (0, a) that hili is even and ~O with
equality not occurring on an interval.

For the proofs of the theorems, we need a lemma. Let 13 denote the linear
functional on V4 assigning to p(x) = a l + a2x + a3h'(x) + a4h(x) the
number a3 •

LEMMA. Any set {eXt' eX2 ' e~./3}' XI*X2• is independent in V:,.
(Notation: ex(j) =f(x) and e~(j) =f'(x).)

Proof Suppose 1= aleXt + a2eX2 + a3e~ + a4 / 3= 0 E V:'. and consider
the 4 X 4 matrix equation obtained by evaluating 1 at 1, x, h, h', respec
tively:

0 0

XI x 2 0

h(xl) h(x2) 0 0

h'(x l) h'(x2) 0

But the determinant of the matrix is easily seen to be [h(x l) - h(x2)] *0
since h is increasing. Thus al = 0, 1~ i ~ 4. I

Proof of Theorems 1 and 2. The proof is a generalization of the
techniques of [3]. Since V4 is Haar, for any r l < r2 < r3 in (-a, a) with
oE (r2 , r3) there is a unique (up to a nonzero scalar multiple) nonzero
Po E V4 vanishing at r l' r2, r3. Hence there is a point C; = c;(r2 , r3) E (r2, r3)

such that p~(C;) = O. Now if C; <0, then move r 2 towards 0 continuously from
the left; clearly. by the continuity, for some r2' C; = O. Similarly, if C; >0, then
move r3 towards 0 continuously from the right; clearly, for some r3' C; = O.
We conclude that there exists a nonzero Po E V4 vanishing at some
r l < r2 < r3 in (-a, a) and such that p~(O) = 0, where 0 E (r2 , r3). We can
therefore takepo=h+Klh'+co, where co*O. Set [a,b]=[r p r3]. Now
define g to be the 4-piece piecewise linear function joining the five points (r l •

(_1)1), i = 1,2,3, and (±e,O), where e is fixed so that r2 < -e <0 < e < r3,
and define f = g + Kh, where K is a positive constant to be determined later.
We now show that Kh is a best approximation to f (see, e.g., [2]) by noting
that {-ert , er2 , -er3 , e~} is an extremal set for f and Kh whose convex hull
contains the zero of V:" as follows: From the existence of Po we have that
I=A,I(-ert)+A,2er2+A,3(-er3)+A.4e~=OEV:, for some choice of {A.I}:=I'
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But by the lemma, ~ = V4 (') {p :p'(O) = 13(p) = O} is a two-dimensional
Haar space and thus by restricting 1to ~, we see that all AI (i = 1,2,3) are
of the same nonzero sign since, as is well known, "ordinary alternation"
occurs in Haar spaces. We need only show, therefore, that A3 A4 > O. But now
let p(x) E V4 have zeros at r p r2> and 0 and satisfy p(r3) = 1. Clearly,
p'(O) ~ O. If p'(O) =0, then I(p) =0 would imply that A3= 0, which is not
possible. Thus p'(O) > 0 and p'(0)p(r3) > O. Hence A4 A3> O. Thus Kh is a
best approximation to I and, by referring to the general theory of [1], we can
easily see that Kh is a unique best approximation, as follows: First, by
L'Hospital's rule, note that limx ...oh(x)/h'(x) = limx ...o h'(x)/h"(x) = 0 and
so h' dominates h near O. Next note that whenever e~ is an extremal
functional for a best approximation PI' then Pf= a l +a3h' +a4 h and hence
also 13(Pf) =0 (otherwise, nonmonotonic h' dominates h near 0), so that 13is
an augmented extremal. Thus, by the lemma, V4 is generalized Baar with
respect to I and Kh (see [1] for definition) and we conclude by the theory of
[1] that Kh is the unique best approximation to f We therefore can write
unambiguously PI for Kh.

We now show that the rate (of strong unicity) is u at best. Define Pa(x) =
p)x)+a[po(x)+K1h"(rp-l(a»x] for O<a~ao, where ao is chosen so
small that first II-Pal =1 g-a[po+Klh"(rp-l(a»x]1 decreases as x
moves away from r l in a neighborhood of S = {r p r 2 , r3} for all a
(0 <a ~ ao)' This can be done since Ig I strictly decreases linearly as x
moves away from each r/. Hence ao can be chosen so small that II1-Pall =
maxXES Ii-Pal, 0 < a ~ ao' Thus Ilf-Pall = 1 + IK1r*1 ah"(rp-I(a»
for some r* E {r p r 2 , r3}. Also, note that III- PIli = II gil = 1 and
II Pf-Pall ~ Ip)O) - Pa(O)1 = ICol a. Furthermore, p~(x)=Kh'(x)+a[h'(x)+
Klh"(x)] +Klah"(rp-I(a». By replacing Po by -Po if necessary, we may
assume K 1 is positive. Then for x >O,p~(x) >0; for x E [rl> -rp-I(a)] and K
chosen sufficiently large (initially), since h' (x) = A(X) rp(x) h"(x), where
A(X) -d >0, x ~ 0+, Kh'(x) dominates K I ah"(x) showing that p~(x) >0
here; for x E [-rp-I(a), 0], h"(rp-I(a» ~ Ih"(x)l, again implying that
p~(x)~O. Thus Pa EM4 and (1I/-Pall-II/-Pfll)/u(lIPa-PIII)~

IK1r*Iah"(rp -I(a»/u(l Co Ia). Thus u(x) = xh"(rp -I(lco I-I x» is the best rate
function that could hold in (2), and the proof of Theorem 1 is complete as
soon as we indicate how I can be chosen monotone. Note, however, that as
long as K is large enough1= g +Kh is admissible. Also, for K large enough,
since h is odd and monotone with h'(x) >0 except at x =0, Kh' will
dominate g' outside the neighborhood (-e, e) of x = 0, prescribed at the
beginning of the proof, and thus g +Kh will be monotone there. On the other
hand, in (-e, e) f' = Kh' ~ O. Thus for K large enough I satisfies the
restraints (i.e., I is monotone).

Next we show that, under the additional hypotheses of Theorem 2, for the
above I and Pf' (2) does in fact hold with u(x) = xfl/(Y) h"(y), y = rp -I(CX)
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for some constant c>O. Let E=EoUE 1, where EO={eri}~=1 and
E 1 = {e~}. Define the semi-norm 11-1I' on V4 by Ilqll' = max {I e(q)1 : e E E}.
Set Q= {q = (PJ- p)/II Pf- pll': II PJ- pll' =1= 0 and p E M 4}. We claim that
infqeQ maxeeEo a(e)e(q)=r> 0, where a(er) = sgn(f(r;)-pJr;» = (_1)i,
i = 1, 2, 3, and a(e~) = 1. Indeed, suppose there exists qm E Q for which
limm.... oo maxeeEo a(e) e(qm) ~ O. Also, from qm = (Pf- Pm)!11 Pf- pll' with
Ilpf-pll'=I=O and pEM4, we see that a(e)e(qm)~O for eEE I. Thus
limm.... oo a(e) e(qm) ~ 0 for all e E E and hence, since 0 belongs to the convex
hull of {a(e) e: e E E}, we conclude that limm.... oo e(qm) = 0 Ve E E. Hence
limm.... oo Ilqmll' = 0 while Ilqmll' = 1, a contradiction. Hence there exists
eEEo for which a(e)e(PJ-p)~rllpf-pll'. Now observe that II!-pll~

a(e)(e(f) - e(p» = a(e)(e(f) - e(pf» + a(e)(e(PJ) - e(p» = II!- PJII +
a(e)(e(Pf) - e(p» ~ II!- PJII + r II Pf- pll'. Observing that this inequality is
also true if II PJ- pll' = 0, we have established a strong uniqueness-type
result with the seminorm 11·11'. Next, a second norm is introduced; namely,
II pll* = max{le(p)l: e E EQUg}, where EQUg = E U {l3}' where 13 is the
augmented extremal discussed above. That 1111* is in fact a norm on V4 is
immediate from the lemma. Thus, there exists a constant y' > 0 such that
II P II * ~ y' II p II for all p E V4 • Finally, we wish to establish that there exist
A >0 and K>O for which Ilpf-pll'~Au(Kllpf-pll*) for all pEM4
satisfying II p II ~ N. First observe that if II Pf - p II' = 0, then since p E M 4 we
have that e(pf-p)=O for all eEEQUg, implying that IIPJ-pll*=O or
Pf = p. Now, for e E E, we clearly have that for any K > 0 there exists a
constant K 1 for which le(Pf-p)I~Klu(Kle(Pf-p)l) since Ilpll~N, where
u(x)=xl/f(y)h"(y) with y=tp-I(x/leol), as defined above. Let e=/3. We
claim that there exist K 2 > 0 and K > 0 for which Ie~(PJ - p)1 ~
K 2 u(KI/3(PJ- p)l) for all p E M 4 satisfying II pll ~ N. Suppose that this is not
the case. Then, for any fixed K > 0, corresponding to each integer v > 0 there
exists qvEM4 with Ilqvll~N for which Iq~(0)1«1/v)u(KI/3(qJI). By
passing to subsequences if necessary we may assume that qv converges
uniformly to q E M4. Clearly, we must have q'(O) = O. We can write q~(x) =
q~(0)+/3(qv)h"+cvh'=!3v+avh"+cvh', where !3v~O, !3v~O (since
q'(O) = 0), av =1= 0, av --t 0 (since liq) = 0 because q E M 4 and q'(O) = 0),
Cv--t c, and q~(x) ~ 0, Vx E [a, b]; note q = q(O) + ch. Note also that since
(1, x, h', h) is a basis for V4, if P E V4 and II pll ~ N, then the coefficient of h
in the expansion for p must be bounded above by some constant c*
depending only on N. Thus VxE [a,b], q:(x)=!3v+avh"+c*h' >0,
where levi < c*, Vv. Now q: has a critical point in [a,b] for v sufficiently
large as follows: q:'(x) = avh"'(x) + c* h"(x) = 0 has a solution Xv = xv(av)
for av sufficiently small since h"(x)/h"'(x) = (sgn x)(P + e5 1(lxl» tp(ixl),
e5 1(x) =0(1); here A~f.l<OO since, by L'Hospital's rule h"tp/h'=
h"'tp/h" + tp' +0(1), and h'(x)/h"(x) = (sgn X)(A + e5 2(ixl» tp(ixl), where
e5ix) =0(1), and tp'(O)~O. In fact then IXvl=tp-I(-(sgnxJa)
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(p + bl(lxvl»c*) = qJ-I(lavl/(p + bl(lxvl» c*). Now choose 0 < K <
(pC*)-I. Thus, for v sufficiently large, IXvl >qJ-I(Kla,,1) and

Pv> -avh"(xv) - c*h'(xv)

= [-av- c*(sgn Xv)(A +bilxvI» qJ(lxvl)] h"(xv)

= c*(sgn xv)[.u +b,(lxvl) - A- b2(lxvl)] qJ(lxvl) h"(xv)

= c*(r +o(xJ) 1/1(1 Xv I) qJ(lxvI) h"(IxvI),

for some positive constant r, from the definition of 1/1. Then since qJ(lxvl) ~
K lavl and IXvl ~Yv= qJ-I(Klavl), and since 1/1, qJ, and h" are nondecreasing,
the preceding inequality leads to

where 0 < r' < r and v is sufficiently large, which is our desired
contradiction. We conclude by setting c = Ky' (in the statement of
Theorem 2). I

ApPLICATIONS

EXAMPLE 2 (h =xe-X-
2
). We show that the hypotheses of Theorem I

hold. First V4 is Haar in some neighborhood of the origin. To see this, note
that (h', h", hIlI) = «x2+2)/x2, 2(2 - x2)jxs, 2(3x4

- 12x2+4)/x 8
) e-x-

2

and apply part (ii) of the lemma below. The remaining hypotheses of
Theorem 1 are easily checked and we can take qJ(x) = x3. We conclude that
the rate of strong unicity is at best u(x) = x-2/3e-cIX-2/J for some constant
C1 > O. In particular, we have an example where the best approximation is
unique but the "order" a = 0; in fact then any rate function decays at best
exponentially.

Further, however, the additional hypotheses of Theorem 2 are seen to hold
where qJ'(O) = 0 and I/I(Y) = i y 2 is asymptotic to «h"/h"') - (h'/h"»/qJ, as
is easily checked. Hence (2) holds with u(x) = e- C2X-2/J for some constant
C2> O. We conclude that the best possible rate function u satisfies e- C2X-

2
/J~

u(x) ~ x-2/3e-CIX-2/J for constants 0 < C1 < C2and thus decays exponentially.

EXAMPLE 3 (h = (sgn x)lxl2+r, r >0). Note that if r is an odd integer,
then h = x2+r and we are in the case of Example 1. One can check
immediately that all the hypotheses of Theorems 1 and 2 hold except for the
Haar hypothesis on V4 • But to see that V4 is Haar on (-00, (0), apply
part (i) of the lemma below (if r ~ 1 also, (ii) applies). As in Example 1,
qJ(x) = x and we conclude that (2) holds with u(x) = [1/(2 + r)(1 + r)]

640/37/3-4
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xh"(x) = Xr+1 and u is best possible. In other words this example provides
strong uniqueness of arbitrary "order" a = (1/(1 + r) JE (0, I).

LEMMA. Let V4 =(l,x,h'(x),h(x)J, where h is odd in (-a,a),
It E C 2(-a, a), h'(O) =0, and h" is strictly increasing. Then V4 is Haar on
(-a, a) if on (-a, a)

(i) It' =KIIt"IP for some p > I and K > 0, or

(ii) hE CJ(-a, a), h"/h lll is strictly monotonic, and limx -+o(h"(x)/
h'''(x» = 0.

Proof Show (V4)' == [I, h", h'l is Haar in both cases by considering the
Vandermonde determinant

h"(x1) h'(x 1)

D = h"(x2) h'(x2).

h"(xJ) h'(xJ )

In case (i) let y =h"(x); then

YI IYIIP

D=K Y2 IY21P

Y3 IY31P

=K(Y2 - Yl)(Y3 - Y2) [ (I Y3~ =~21P ) - CY2~ =~~lIP) ].
Hence (I Yi+IIP -I ydP)/(Yi+1 - ya =p(sgn '1/)I'1dP -t, i = 1,2, where
YI <1/1 <Y2 <112 <Y3; and so D*,O since 1(1/) = (sgn 1/)I1/lp-1 is an
increasing function.

In case (ii),

h'(x2) - h'(X1»)
h"(x!) - h"(xl) ,

where K(X 1 , x 2 , x3) = (h"(x!) - h"(x l»(h"(x3) - h"(xI». Hence D =
K(XI' Xl' x3)(h"(712)/h'" (712) - h"('1I)/h"'(11I»' where XI < 711 <x 2 < 1'/2 <x J ;

so D*,O by hypothesis. (Note that h'" >°in (-a, a) except possibly at
X =0. If h"'(O) =°and °E (xi' x i + I)' then the mean value theorem holds
for (h'(xI+1)-h'(xi»)/(h"(Xi+I)-h"(Xi» as follows: First, if h'(Xi+I)
h'(x,) * 0, let h:'(x)=h"'(x)+e, 6>0, and h:(x)=h"(x)+6X, h;(x)=
h'(x) +8x 2j2. Then (h;(xi+I) - h~(Xi»)/(h:(x/+ I) - h:(x/» = h:(~.)/h:'(~.).
Then let e -+°and let ~ be a subsequential limit point of~. (note that ~ *' 0);
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thus (h'(xi+I) - h'(xi»j(h"(xi+I) - h"(xi» = h"(e)jh"'(e). Secondly, if
h'(xi+ l ) - h'(xi) = 0, then (h'(x i + l ) - h'(Xi»j(h"(xI+ I) - h"(xi»= 0 =
limx...o (h"(x)jh"'(x» =h"(O)jh"'(O) (by implicit definition).) I

COROLLARY. Given u E C2 [0, a), u(O) = u'(O) = 0, u(x)jx increasing,
limx-+o(xu'ju) > 1, f~ (xu'ju) < 00, and u'ju ~ (u"ju') + (ljx), then there
exists a problem of best monotone approximation from a Baar space with
rate of strong uniqueness at best u(c1x) and at least 'I'(tp -I(X» u(c2 x), where
tp-I(x)=g(tu'(t)ju(t»dt, 'I'=tp'j(l-tp'), and cp c2 are positive
constants.

Proof Let h(x) = f~ (u[tp(t)]ju[tp(a)]) dt, 0 ~ x <a, and extend h oddly
to -a <x < O. Then check that all the hypotheses of Theorems 1 and 2
(including part (ii) of the lemma above) are satisfied. Next apply the
conclusions of Theorems 1 and 2 to obtain the desired conclusion. I

EXAMPLE 4. (u(x) = e-x-', 1 > s >0).

EXAMPLE 5. (u(x) =xl+ s, S ~ 1).
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