Strong Unicity of Arbitrary Rate

B. L. CHALMERS* AND F. T. METCALF

Department of Mathematics, University of California, Riverside, California 92521, U.S.A.

AND

G. D. TAYLOR[†]

Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523, U.S.A.

Communicated by E. W. Cheney

Received April 18, 1980

The concept is introduced of strong unicity with respect to a rate function u, i.e., $||f-p|| \ge ||f-p_f|| + \gamma u(||p-p_f||)$, in approximating (with constraints) f in a Banach space X from an *n*-dimensional subspace V ($p \in V$, p_f denotes the best approximation to f, and γ denotes a positive constant). Past work has demonstrated examples of monotone approximation in C[a, b], where V is Haar and the best u has polynomial decay of arbitrary even degree (i.e., $u(t) = t^{2m}$, m = 1, 2,...,). In particular, in this same setting examples are demonstrated where the best u decays exponentially (e.g., $\exp(-c_2 t^{-2/3}) \le u(t) \le t^{-2/3} \exp(-c_1 t^{-2/3})$ for constants $0 < c_1 < c_2$ and a general statement is provided relating the best u to h'' when V = [1, x, h'(x), h(x)] and $h \in C^2$ satisfies certain conditions.

From [4] and [5] we have the existence of $f \in C[a, b]$ such that, if p_f denotes a best (monotone) approximation to f from $M_4 = V_4 \cap \{p: p'(x) \ge 0\}$, where $V_4 = [1, x, x^2, x^3]$, then p_f is strongly unique of order $\frac{1}{2}$ ([5]) and the order $\frac{1}{2}$ is best possible ([4]). That is, for each N > 0 there is a constant $\gamma > 0$ such that, for all $p \in M_4$ with $||p|| \le N$,

$$||f - p|| \ge ||f - p_f|| + \gamma ||p - p_f||^{1/\alpha},$$
(1)

where $\alpha = \frac{1}{2}$ and is best possible (i.e., no larger α will suffice).

* Research supported in part by the National Science Foundation under Grant MCS78-02941.

^{\dagger} Research supported in part by the Air Force Office of Scientific Research, Air Force Systems Command, USAF, under Contract F-49620-79-C-0124, and by the National Science Foundation under Grant MCS78-05847.

0021-9045/83 \$3.00

238

Copyright © 1983 by Academic Press, Inc. All rights of reproduction in any form reserved. In [3] the above result is extended to the cases where $V_4 = [1, x, x^{2m}, x^{2m+1}]$, where m = 1, 2, ...; i.e., (1) holds where the "order" $\alpha = 1/2m$ and is best possible.

DEFINITION 1. If p_f is a best uniform approximation to $f \in C[a, b]$ from W, a subset of C[a, b], we shall say that p_f is strongly unique with (respect to the) rate (function) u ($u \in C[0, \infty)$, u is increasing, and u(0) = 0) if for each N > 0 there is a constant $\gamma > 0$ such that

$$||f - p|| \ge ||f - p_f|| + \gamma u(||p - p_f||)$$
(2)

for all $p \in W$ satisfying $||p|| \leq N$. We shall say that the *rate* (of strong unicity) is at best u if (2) cannot be satisfied by any u_1 , where $u(x) = o(u_1(x)), x \to 0^+$.

EXAMPLE 1. For the cases treated in [3], $u(x) = \kappa x^{2m}$ (for an arbitrary constant $\kappa > 0$). Note in fact that $u(x) = x(x^{2m+1})''$, where $x^{2m+1} \in V_4 = [1, x, x^{2m}, x^{2m+1}]$. We thus have an example of the following two theorems by taking $h(x) = x^{2m+1}$ and $\varphi(x) = x$ and noting that $(h'/h'')/\varphi = 1/2m < 1/(2m-1) = (h''/h''')/\varphi$.

THEOREM 1. Take $V_4 = [1, x, h'(x), h(x)]$ to be a Haar space in some neighborhood $(-\alpha, \alpha)$ of the origin, where $h \in C^2(-\infty, \infty)$, h is odd, h'(0) = 0, h'' is strictly increasing, and h'(x)/h''(x) is asymptotic $(as x \to 0^+)$ to $\lambda \varphi(x), \lambda > 0$, where $\varphi \in C[0, \infty), \varphi(0) = 0$, and φ strictly increases to ∞ . Then if we take $W = M_4$ (i.e., monotone approximation from V_4), there is an $f \in C[a, b], 0 \in (a, b) \subset (-\alpha, \alpha)$ such that the best approximation p_f to f is unique and the rate of strong unicity is at best $u(x) = xh''(\varphi^{-1}(cx))$ for some constant c > 0. Furthermore, f can itself be chosen monotone.

THEOREM 2. In addition to the hypotheses of Theorem 1, suppose $h \in C^3(0, \infty)$, $\varphi \in C^1[0, \infty)$, $\varphi'(x) > 0$ for x > 0, and $\lambda \varphi'(0) < 1$. Then, for f in Theorem 1, p_f is strongly unique with respect to $u(x) = x\psi(y) h''(y)$, where $y = \varphi^{-1}(cx)$ for some constant c > 0, and

(i) *if* $\varphi'(0) > 0$, $\psi \equiv 1$;

(ii) if $\varphi'(0) = 0$, ψ is any positive nondecreasing continuous function asymptotic to $[(h''/h''') - (h'/h'')]/\varphi$.

Note. If $\varphi'(0) > 0$, then $[(h''/h''') - (h'/h'')]/\varphi$ is asymptotic to a positive constant; thus (i) and (ii) can be combined and replaced by " ψ is any positive continuous function asymptotic to $[(h''/h''') - (h'/h'')]/\varphi$."

Remark. That h is odd and continuous implies h(0) = 0; $h \in C^1$ implies h' is even; $h \in C^2$ implies h'' is odd and h''(0) = 0; h'' strictly increasing and h'(0) = 0 implies $h'(x) \ge 0$ with equality only for x = 0. Likewise, when $h \in C^3(0, \alpha)$, we have on $(-\alpha, 0) \cup (0, \alpha)$ that h''' is even and ≥ 0 with equality not occurring on an interval.

For the proofs of the theorems, we need a lemma. Let l_3 denote the linear functional on V_4 assigning to $p(x) = \alpha_1 + \alpha_2 x + \alpha_3 h'(x) + \alpha_4 h(x)$ the number α_3 .

LEMMA. Any set $\{e_{x_1}, e_{x_2}, e'_0, l_3\}, x_1 \neq x_2$, is independent in V_4^* . (Notation: $e_x(f) = f(x)$ and $e'_x(f) = f'(x)$.)

Proof. Suppose $l = a_1e_{x_1} + a_2e_{x_2} + a_3e'_0 + a_4l_3 = 0 \in V_4^*$, and consider the 4×4 matrix equation obtained by evaluating l at 1, x, h, h', respectively:

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ x_1 & x_2 & 1 & 0 \\ h(x_1) & h(x_2) & 0 & 0 \\ h'(x_1) & h'(x_2) & 0 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

But the determinant of the matrix is easily seen to be $[h(x_1) - h(x_2)] \neq 0$ since h is increasing. Thus $a_i = 0, 1 \le i \le 4$.

Proof of Theorems 1 and 2. The proof is a generalization of the techniques of [3]. Since V_4 is Haar, for any $r_1 < r_2 < r_3$ in $(-\alpha, \alpha)$ with $0 \in (r_2, r_3)$ there is a unique (up to a nonzero scalar multiple) nonzero $p_0 \in V_4$ vanishing at r_1, r_2, r_3 . Hence there is a point $\xi = \xi(r_2, r_3) \in (r_2, r_3)$ such that $p'_0(\xi) = 0$. Now if $\xi < 0$, then move r_2 towards 0 continuously from the left; clearly, by the continuity, for some r_2 , $\xi = 0$. Similarly, if $\xi > 0$, then move r_3 towards 0 continuously from the right; clearly, for some r_3 , $\xi = 0$. We conclude that there exists a nonzero $p_0 \in V_4$ vanishing at some $r_1 < r_2 < r_3$ in $(-\alpha, \alpha)$ and such that $p'_0(0) = 0$, where $0 \in (r_2, r_3)$. We can therefore take $p_0 = h + \kappa_1 h' + c_0$, where $c_0 \neq 0$. Set $[a, b] = [r_1, r_3]$. Now define g to be the 4-piece piecewise linear function joining the five points $(r_i,$ $(-1)^{i}$, i = 1, 2, 3, and $(\pm \varepsilon, 0)$, where ε is fixed so that $r_{2} < -\varepsilon < 0 < \varepsilon < r_{3}$, and define $f = g + \kappa h$, where κ is a positive constant to be determined later. We now show that κh is a best approximation to f (see, e.g., [2]) by noting that $\{-e_{r_1}, e_{r_2}, -e_{r_3}, e'_0\}$ is an extremal set for f and κh whose convex hull contains the zero of V_4^* , as follows: From the existence of p_0 we have that $l = \lambda_1(-e_{r_1}) + \lambda_2 e_{r_2} + \lambda_3(-e_{r_3}) + \lambda_4 e_0' = 0 \in V_4^* \text{ for some choice of } \{\lambda_i\}_{i=1}^4.$ But by the lemma, $V_4^0 = V_4 \cap \{p : p'(0) = l_3(p) = 0\}$ is a two-dimensional Haar space and thus by restricting l to V_A^0 , we see that all λ_i (i = 1, 2, 3) are of the same nonzero sign since, as is well known, "ordinary alternation" occurs in Haar spaces. We need only show, therefore, that $\lambda_3 \lambda_4 > 0$. But now let $p(x) \in V_4$ have zeros at r_1 , r_2 , and 0 and satisfy $p(r_3) = 1$. Clearly, $p'(0) \ge 0$. If p'(0) = 0, then l(p) = 0 would imply that $\lambda_3 = 0$, which is not possible. Thus p'(0) > 0 and $p'(0) p(r_3) > 0$. Hence $\lambda_4 \lambda_3 > 0$. Thus κh is a best approximation to f and, by referring to the general theory of [1], we can easily see that κh is a unique best approximation, as follows: First, by L'Hospital's rule, note that $\lim_{x\to 0} h(x)/h'(x) = \lim_{x\to 0} h'(x)/h''(x) = 0$ and so h' dominates h near 0. Next note that whenever e'_0 is an extremal functional for a best approximation p_f , then $p_f = \alpha_1 + \alpha_3 h' + \alpha_4 h$ and hence also $l_3(p_i) = 0$ (otherwise, nonmonotonic h' dominates h near 0), so that l_3 is an augmented extremal. Thus, by the lemma, V_4 is generalized Haar with respect to f and κh (see [1] for definition) and we conclude by the theory of [1] that κh is the unique best approximation to f. We therefore can write unambiguously p_f for κh .

We now show that the rate (of strong unicity) is u at best. Define $p_{\alpha}(x) =$ $p_{f}(x) + \alpha [p_{0}(x) + \kappa_{1}h''(\varphi^{-1}(\alpha))x]$ for $0 < \alpha \leq \alpha_{0}$, where α_{0} is chosen so small that first $|f - p_{\alpha}| = |g - \alpha [p_0 + \kappa_1 h''(\varphi^{-1}(\alpha))x]|$ decreases as x moves away from r_i in a neighborhood of $S = \{r_1, r_2, r_3\}$ for all α $(0 < \alpha \leq \alpha_0)$. This can be done since |g| strictly decreases linearly as x moves away from each r_i . Hence α_0 can be chosen so small that $||f - p_{\alpha}|| =$ $\max_{x \in S} |\tilde{f} - p_{\alpha}|, \ 0 < \alpha \leq \alpha_0. \text{ Thus } \|f - p_{\alpha}\| = 1 + |\kappa_1 r_*| \ \alpha h''(\varphi^{-1}(\alpha))$ for some $r_* \in \{r_1, r_2, r_3\}$. Also, note that $||f - p_f|| = ||g|| = 1$ and $||p_f - p_\alpha|| \ge |p_f(0) - p_\alpha(0)| = |c_0| \alpha$. Furthermore, $p'_\alpha(x) = \kappa h'(x) + \alpha [h'(x) + \alpha h'(x)] = \kappa h'(x) + \alpha [h'(x) + \alpha h'(x)]$ $\kappa_1 h''(x)$] + $\kappa_1 \alpha h''(\varphi^{-1}(\alpha))$. By replacing p_0 by $-p_0$ if necessary, we may assume κ_1 is positive. Then for x > 0, $p'_{\alpha}(x) > 0$; for $x \in [r_1, -\varphi^{-1}(\alpha)]$ and κ chosen sufficiently large (initially), since $h'(x) = \lambda(x) \varphi(x) h''(x)$, where $\lambda(x) \rightarrow \lambda > 0, x \rightarrow 0^+, \kappa h'(x)$ dominates $\kappa_1 \alpha h''(x)$ showing that $p'_{\alpha}(x) > 0$ here; for $x \in [-\varphi^{-1}(\alpha), 0]$, $h''(\varphi^{-1}(\alpha)) \ge |h''(x)|$, again implying that $p'_{\alpha}(x) \ge 0$. Thus $p_{\alpha} \in M_4$ and $(||f - p_{\alpha}|| - ||f - p_f||)/u(||p_{\alpha} - p_f||) \le |\kappa_1 r_*| ah''(\varphi^{-1}(\alpha))/u(|c_0|\alpha)$. Thus $u(x) = xh''(\varphi^{-1}(|c_0|^{-1}x))$ is the best rate function that could hold in (2), and the proof of Theorem 1 is complete as soon as we indicate how f can be chosen monotone. Note, however, that as long as κ is large enough $f = g + \kappa h$ is admissible. Also, for κ large enough, since h is odd and monotone with h'(x) > 0 except at x = 0, $\kappa h'$ will dominate g' outside the neighborhood $(-\varepsilon, \varepsilon)$ of x = 0, prescribed at the beginning of the proof, and thus $g + \kappa h$ will be monotone there. On the other hand, in $(-\varepsilon, \varepsilon)$ $f' = \kappa h' \ge 0$. Thus for κ large enough f satisfies the restraints (i.e., f is monotone).

Next we show that, under the additional hypotheses of Theorem 2, for the above f and p_f , (2) does in fact hold with $u(x) = x\psi(y) h''(y)$, $y = \varphi^{-1}(cx)$

for some constant c > 0. Let $E = E^0 \cup E^1$, where $E^0 = \{e_n\}_{n=1}^3$ and $E^1 = \{e'_0\}$. Define the semi-norm $\|\cdot\|'$ on V_4 by $\|q\|' = \max\{|e(q)|: e \in E\}$. Set $Q = \{q = (p_f - p)/|| p_f - p||' : || p_f - p||' \neq 0 \text{ and } p \in M_4\}$. We claim that $\inf_{a \in O} \max_{e \in E^0} \sigma(e) e(q) = \tau > 0$, where $\sigma(e_{r_i}) = \operatorname{sgn}(f(r_i) - p_f(r_i)) = (-1)^i$, i = 1, 2, 3, and $\sigma(e'_0) = 1$. Indeed, suppose there exists $q_m \in Q$ for which $\lim_{m\to\infty} \max_{e\in E^0} \sigma(e) e(q_m) \leq 0$. Also, from $q_m = (p_f - p_m)/||p_f - p||'$ with $|| p_f - p ||' \neq 0$ and $p \in M_4$, we see that $\sigma(e) e(q_m) \leq 0$ for $e \in E^1$. Thus $\lim_{m\to\infty} \sigma(e) e(q_m) \leq 0$ for all $e \in E$ and hence, since 0 belongs to the convex hull of $\{\sigma(e) e : e \in E\}$, we conclude that $\lim_{m \to \infty} e(q_m) = 0 \quad \forall e \in E$. Hence $\lim_{m\to\infty} ||q_m||' = 0$ while $||q_m||' = 1$, a contradiction. Hence there exists $e \in E^0$ for which $\sigma(e) e(p_f - p) \ge \tau || p_f - p ||'$. Now observe that $||f - p|| \ge \tau$ $\sigma(e)(e(f) - e(p)) = \sigma(e)(e(f) - e(p_f)) + \sigma(e)(e(p_f) - e(p)) = ||f - p_f|| + ||f - p_f||$ $\sigma(e)(e(p_f) - e(p)) \ge ||f - p_f|| + \tau ||p_f - p||'$. Observing that this inequality is also true if $|| p_f - p ||' = 0$, we have established a strong uniqueness-type result with the seminorm $\|\cdot\|'$. Next, a second norm is introduced; namely, $||p||^* = \max\{|e(p)|: e \in E^{aug}\}, \text{ where } E^{aug} = E \cup \{l_3\}, \text{ where } l_3 \text{ is the }$ augmented extremal discussed above. That $\| \|^*$ is in fact a norm on V_A is immediate from the lemma. Thus, there exists a constant $\gamma' > 0$ such that $|| p ||^* \ge \gamma' || p ||$ for all $p \in V_4$. Finally, we wish to establish that there exist A > 0 and $\kappa > 0$ for which $\|p_f - p\|' \ge Au(\kappa \|p_f - p\|^*)$ for all $p \in M_4$ satisfying $||p|| \leq N$. First observe that if $||p_f - p||' = 0$, then since $p \in M_4$ we have that $e(p_f - p) = 0$ for all $e \in E^{aug}$, implying that $||p_f - p||^* = 0$ or $p_f = p$. Now, for $e \in E$, we clearly have that for any $\kappa > 0$ there exists a constant K_1 for which $|e(p_f - p)| \ge K_1 u(\kappa |e(p_f - p)|)$ since $||p|| \le N$, where $u(x) = x\psi(y) h''(y)$ with $y = \varphi^{-1}(x/|c_0|)$, as defined above. Let $e = l_3$. We claim that there exist $K_2 > 0$ and $\kappa > 0$ for which $|e'_0(p_f - p)| \ge$ $K_2 u(\kappa |l_3(p_f - p)|)$ for all $p \in M_4$ satisfying $||p|| \leq N$. Suppose that this is not the case. Then, for any fixed $\kappa > 0$, corresponding to each integer $\nu > 0$ there exists $q_v \in M_4$ with $||q_v|| \leq N$ for which $|q'_v(0)| < (1/v) u(\kappa |l_3(q_v)|)$. By passing to subsequences if necessary we may assume that q_v converges uniformly to $q \in M_4$. Clearly, we must have q'(0) = 0. We can write $q'_n(x) =$ $q'_{\nu}(0) + l_{\lambda}(q_{\nu})h'' + c_{\nu}h' = \beta_{\nu} + \alpha_{\nu}h'' + c_{\nu}h', \text{ where } \beta_{\nu} \ge 0, \beta_{\nu} \to 0 \text{ (since }$ q'(0) = 0, $\alpha_n \neq 0$, $\alpha_n \to 0$ (since $l_3(q) = 0$ because $q \in M_4$ and q'(0) = 0), $c_v \rightarrow c$, and $q'_v(x) \ge 0$, $\forall x \in [a, b]$; note q = q(0) + ch. Note also that since (1, x, h', h) is a basis for V_4 , if $p \in V_4$ and $||p|| \leq N$, then the coefficient of h in the expansion for p must be bounded above by some constant c_* depending only on N. Thus $\forall x \in [a, b], q_{v}^{*}(x) = \beta_{v} + \alpha_{v}h'' + c_{*}h' > 0$, where $|c_n| < c_*$, $\forall v$. Now q_n^* has a critical point in [a, b] for v sufficiently large as follows: $q_v^{*'}(x) = \alpha_v h'''(x) + c_* h''(x) = 0$ has a solution $x_v = x_v(\alpha_v)$ for α_{ν} sufficiently small since $h''(x)/h'''(x) = (\operatorname{sgn} x)(\mu + \delta_1(|x|)) \varphi(|x|)$, $\delta_1(x) = o(1)$; here $\lambda \leq \mu < \infty$ since, by L'Hospital's rule $h'' \varphi/h' =$ $h''' \varphi / h'' + \varphi' + o(1)$, and $h'(x) / h''(x) = (\operatorname{sgn} x)(\lambda + \delta_2(|x|)) \varphi(|x|)$, where $\delta_2(x) = o(1)$, and $\varphi'(0) \ge 0$. In fact then $|x_n| = \varphi^{-1}(-(\operatorname{sgn} x_n) \alpha_n/2)$

 $(\mu + \delta_1(|x_\nu|)) c_*) = \varphi^{-1}(|\alpha_\nu|/(\mu + \delta_1(|x_\nu|)) c_*). \text{ Now choose } 0 < \kappa < (\mu c_*)^{-1}. \text{ Thus, for } \nu \text{ sufficiently large, } |x_\nu| > \varphi^{-1}(\kappa |\alpha_\nu|) \text{ and }$

$$\begin{aligned} \beta_{\nu} &> -\alpha_{\nu} h''(x_{\nu}) - c_{*} h'(x_{\nu}) \\ &= \left[-\alpha_{\nu} - c_{*}(\operatorname{sgn} x_{\nu})(\lambda + \delta_{2}(|x_{\nu}|)) \,\varphi(|x_{\nu}|) \right] h''(x_{\nu}) \\ &= c_{*}(\operatorname{sgn} x_{\nu})[\mu + \delta_{1}(|x_{\nu}|) - \lambda - \delta_{2}(|x_{\nu}|)] \,\varphi(|x_{\nu}|) \,h''(x_{\nu}) \\ &= c_{*}(\tau + o(x_{\nu})) \,\psi(|x_{\nu}|) \,\varphi(|x_{\nu}|) h''(|x_{\nu}|), \end{aligned}$$

for some positive constant τ , from the definition of ψ . Then since $\varphi(|x_v|) \ge \kappa |\alpha_v|$ and $|x_v| \ge y_v = \varphi^{-1}(\kappa |\alpha_v|)$, and since ψ, φ , and h'' are nondecreasing, the preceding inequality leads to

$$\beta_{\nu} > c_* \tau' \kappa |\alpha_{\nu}| \psi(y_{\nu}) h''(y_{\nu}),$$

where $0 < \tau' < \tau$ and ν is sufficiently large, which is our desired contradiction. We conclude by setting $c = \kappa \gamma'$ (in the statement of Theorem 2).

APPLICATIONS

EXAMPLE 2 $(h = xe^{-x^{-2}})$. We show that the hypotheses of Theorem 1 hold. First V_4 is Haar in some neighborhood of the origin. To see this, note that $(h', h'', h''') = ((x^2 + 2)/x^2, 2(2 - x^2)/x^5, 2(3x^4 - 12x^2 + 4)/x^8) e^{-x^{-2}}$ and apply part (ii) of the lemma below. The remaining hypotheses of Theorem 1 are easily checked and we can take $\varphi(x) = x^3$. We conclude that the rate of strong unicity is at best $u(x) = x^{-2/3}e^{-c_1x^{-2/3}}$ for some constant $c_1 > 0$. In particular, we have an example where the best approximation is unique but the "order" $\alpha = 0$; in fact then any rate function decays at best exponentially.

Further, however, the additional hypotheses of Theorem 2 are seen to hold where $\varphi'(0) = 0$ and $\psi(y) = \frac{3}{4} y^2$ is asymptotic to $((h''/h''') - (h'/h''))/\varphi$, as is easily checked. Hence (2) holds with $u(x) = e^{-c_2 x^{-2/3}}$ for some constant $c_2 > 0$. We conclude that the best possible rate function u satisfies $e^{-c_2 x^{-2/3}} \le$ $u(x) \le x^{-2/3} e^{-c_1 x^{-2/3}}$ for constants $0 < c_1 < c_2$ and thus decays exponentially.

EXAMPLE 3 $(h = (\operatorname{sgn} x)|x|^{2+r}, r > 0)$. Note that if r is an odd integer, then $h = x^{2+r}$ and we are in the case of Example 1. One can check immediately that all the hypotheses of Theorems 1 and 2 hold except for the Haar hypothesis on V_4 . But to see that V_4 is Haar on $(-\infty, \infty)$, apply part (i) of the lemma below (if $r \ge 1$ also, (ii) applies). As in Example 1, $\varphi(x) = x$ and we conclude that (2) holds with u(x) = [1/(2+r)(1+r)] $xh''(x) = x^{r+1}$ and u is best possible. In other words this example provides strong uniqueness of arbitrary "order" $\alpha = [1/(1+r)] \in (0, 1)$.

LEMMA. Let $V_4 = [1, x, h'(x), h(x)]$, where h is odd in $(-\alpha, \alpha)$, $h \in C^2(-\alpha, \alpha)$, h'(0) = 0, and h" is strictly increasing. Then V_4 is Haar on $(-\alpha, \alpha)$ if on $(-\alpha, \alpha)$

(i) $h' = \kappa |h''|^{\rho}$ for some $\rho > 1$ and $\kappa > 0$, or

(ii) $h \in C^3(-\alpha, \alpha)$, h''/h''' is strictly monotonic, and $\lim_{x\to 0} (h''(x)/h'''(x)) = 0$.

Proof. Show $(V_4)' = [1, h'', h']$ is Haar in both cases by considering the Vandermonde determinant

$$D = \begin{vmatrix} 1 & h''(x_1) & h'(x_1) \\ 1 & h''(x_2) & h'(x_2) \\ 1 & h''(x_3) & h'(x_3) \end{vmatrix}.$$

In case (i) let y = h''(x); then

$$D = \kappa \begin{vmatrix} 1 & y_1 & |y_1|^{\rho} \\ 1 & y_2 & |y_2|^{\rho} \\ 1 & y_3 & |y_3|^{\rho} \end{vmatrix}$$
$$= \kappa (y_2 - y_1)(y_3 - y_2) \left[\left(\frac{|y_3|^{\rho} - |y_2|^{\rho}}{y_3 - y_2} \right) - \left(\frac{|y_2|^{\rho} - |y_1|^{\rho}}{y_2 - y_1} \right) \right]$$

Hence $(|y_{i+1}|^{\rho} - |y_i|^{\rho})/(y_{i+1} - y_i) = \rho(\operatorname{sgn} \eta_i)|\eta_i|^{\rho-1}$, i = 1, 2, where $y_1 < \eta_1 < y_2 < \eta_2 < y_3$; and so $D \neq 0$ since $f(\eta) = (\operatorname{sgn} \eta)|\eta|^{\rho-1}$ is an increasing function.

In case (ii),

$$D = \kappa(x_1, x_2, x_3) \left(\frac{h'(x_3) - h'(x_2)}{h''(x_3) - h''(x_2)} - \frac{h'(x_2) - h'(x_1)}{h''(x_2) - h''(x_1)} \right),$$

where $\kappa(x_1, x_2, x_3) = (h''(x_2) - h''(x_1))(h''(x_3) - h''(x_2))$. Hence $D = \kappa(x_1, x_2, x_3)(h''(\eta_2)/h'''(\eta_2) - h''(\eta_1)/h'''(\eta_1))$, where $x_1 < \eta_1 < x_2 < \eta_2 < x_3$; so $D \neq 0$ by hypothesis. (Note that h''' > 0 in $(-\alpha, \alpha)$ except possibly at x = 0. If h'''(0) = 0 and $0 \in (x_i, x_{i+1})$, then the mean value theorem holds for $(h'(x_{i+1}) - h'(x_i))/(h''(x_{i+1}) - h''(x_i))$ as follows: First, if $h'(x_{i+1}) - h'(x_i) \neq 0$, let $h_{\epsilon''}''(x) = h''''(x) + \epsilon$, $\epsilon > 0$, and $h_{\epsilon}''(x) = h''(x) + \epsilon x$, $h_{\epsilon}'(x) = h''(x) + \epsilon x^2/2$. Then $(h_{\epsilon}'(x_{i+1}) - h_{\epsilon}''(x_i))/(h_{\epsilon}''(x_{i+1}) - h_{\epsilon}''(x_i)) = h_{\epsilon''}'(\xi_{\epsilon})/h_{\epsilon''}''(\xi_{\epsilon})$. Then let $\epsilon \to 0$ and let ξ be a subsequential limit point of ξ_{ϵ} (note that $\xi \neq 0$); thus $(h'(x_{i+1}) - h'(x_i))/(h''(x_{i+1}) - h''(x_i)) = h''(\xi)/h'''(\xi)$. Secondly, if $h'(x_{i+1}) - h'(x_i) = 0$, then $(h'(x_{i+1}) - h'(x_i))/(h''(x_{i+1}) - h''(x_i)) = 0 = \lim_{x \to 0} (h''(x)/h'''(x)) = h''(0)/h'''(0)$ (by implicit definition).)

COROLLARY. Given $u \in C^2[0, \alpha)$, u(0) = u'(0) = 0, u(x)/x increasing, $\lim_{x\to 0}(xu'/u) > 1$, $\int_0^{\alpha} (xu'/u) < \infty$, and $u'/u \ge (u''/u') + (1/x)$, then there exists a problem of best monotone approximation from a Haar space with rate of strong uniqueness at best $u(c_1x)$ and at least $\psi(\varphi^{-1}(x)) u(c_2x)$, where $\varphi^{-1}(x) = \int_0^{\infty} (tu'(t)/u(t)) dt$, $\psi = \varphi'/(1 - \varphi')$, and c_1, c_2 are positive constants.

Proof. Let $h(x) = \int_0^x (u[\varphi(t)]/u[\varphi(\alpha)]) dt$, $0 \le x < \alpha$, and extend h oddly to $-\alpha < x < 0$. Then check that all the hypotheses of Theorems 1 and 2 (including part (ii) of the lemma above) are satisfied. Next apply the conclusions of Theorems 1 and 2 to obtain the desired conclusion.

EXAMPLE 4. $(u(x) = e^{-x^{-s}}, 1 > s > 0).$ EXAMPLE 5. $(u(x) = x^{1+s}, s \ge 1).$

ACKNOWLEDGMENTS

The authors are indebted to the referee for his careful and thorough reading of the manuscript and for suggesting several important modifications which have been incorporated in the paper.

References

- 1. B. L. CHALMERS, A unified approach to uniform real approximation with linear restrictions, *Trans. Amer. Math. Soc.* 166 (1972), 309-316.
- B. L. CHALMERS AND G. D. TAYLOR, Uniform approximation with constraints, Jahresber. Deutsch. Math.-Verein. 81 (1979), 49-86.
- B. L. CHALMERS AND G. D. TAYLOR, On the existence of strong unicity of arbitrarily small order, in "Approximation Theory III" (E. W. Cheney, Ed.), pp. 293-298, 1980.
- Y. FLETCHER AND J. A. ROULIER, A counterexample to strong unicity in monotone approximation, J. Approx. Theory 27 (1979), 19-33.
- D. SCHMIDT, Strong unicity and Lipschitz conditions of order ¹/₂ for monotone approximations, J. Approx. Theory 27 (1979), 346-354.